Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neurol Sci ; 44(2): 429-436, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2158062

ABSTRACT

BACKGROUND: During the Sars-CoV-2 virus pandemic, Italy faced an unrivaled health emergency. Its impact has been significant on the hospital system and personnel. Clinical neurophysiology technicians played a central role (but less visibly so compared to other healthcare workers) in managing the COVID-19 pandemic. This research aims to explore the experiences of clinical neurophysiology technicians during the pandemic and contribute to the debate on the well-being of healthcare workers on the front line. METHODS: We implemented a cross-sectional survey across Italy. It contained questions that were open-ended for participants to develop their answers and acquire a fuller perspective. The responses were analyzed according to the framework method. RESULTS: One hundred and thirty-one responses were valid, and the following themes were generated: technicians' experiences in their relationship with patients, technicians' relationship with their workgroup and directors, and technicians' relationship with the context outside of their work. The first theme included sub-themes: fear of infection, empathy, difficulty, a sense of obligation and responsibility, anger, and sadness. The second theme contained selfishness/solidarity in the workgroup, lack of protection/collaboration from superiors, stress, and distrust. The last theme included fear, stress/tiredness, serenity, sadness, and anger. CONCLUSION: This study contributes to building a humanized perspective for personnel management, bringing attention to the technical work of healthcare professionals in an emergency and the emotional and relational dimensions. These are the starting points to define proper, contextually adequate support.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cross-Sectional Studies , Pandemics , Neurophysiology , Health Personnel
2.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2142492

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia and high-permeability pulmonary edema. A hallmark of the disease is the presence of lung inflammation with features of diffuse alveolar damage. The molecular pathogenetic mechanisms of COVID-19-associated ARDS (CARDS), secondary to SARS-CoV-2 infection, are still not fully understood. Here, we investigate the effects of a cytokine-enriched conditioned medium from Spike S1-activated macrophage on alveolar epithelial A549 cells in terms of cell proliferation, induction of autophagy, and expression of genes related to protein degradation. The protective effect of baricitinib, employed as an inhibitor of JAK-STAT, has been also tested. The results obtained indicate that A549 exhibits profound changes in cell morphology associated to a proliferative arrest in the G0/G1 phase. Other alterations occur, such as a blockade of protein synthesis and the activation of autophagy, along with an increase of the intracellular amino acids content, which is likely ascribable to the activation of protein degradation. These changes correlate to the induction of IFN-regulatory factor 1 (IRF-1) due to an increased secretion of IFN-γ in the conditioned medium from S1-activated macrophages. The addition of baricitinib prevents the observed effects. In conclusion, our findings suggest that the IFN-γ-IRF-1 signaling pathway may play a role in the alveolar epithelial damage observed in COVID-19-related ARDS.

3.
Biomedicines ; 10(9)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2032844

ABSTRACT

The purpose of this study was to examine the effect of the JAK-STAT inhibitor baricitinib on the inflammatory response of human monocyte-derived macrophages (MDM) and endothelial cells upon exposure to the spike S1 protein from SARS-CoV-2. The effect of the drug has been evaluated on the release of cytokines and chemokines from spike-treated MDM, as well as on the activation of endothelial cells (HUVECs) after exposure to conditioned medium collected from spike-activated MDM. Results obtained indicate that, in MDM, baricitinib prevents the S1-dependent phosphorylation of STAT1 and STAT3, along with the induction of IP-10- and MCP-1 secretion; the release of IL-6 and TNFα is also reduced, while all other mediators tested (IL-1ß, IL-8, RANTES, MIP-1α and MIP-1ß) are not modified. Baricitinib is, instead, poorly effective on endothelial activation when HUVECs are exposed to supernatants from S1-activated macrophages; the induction of VCAM-1, indeed, is not affected by the drug, while that of ICAM-1 is only poorly inhibited. The drug, however, also exerts protective effects on the endothelium by limiting the expression of pro-inflammatory mediators, specifically IL-6, RANTES and IP-10. No effect of baricitinib has been observed on IL-8 synthesis and, consistently, on neutrophils chemiotaxis. Our in vitro findings reveal that the efficacy of baricitinib is limited, with effects mainly focused on the inhibition of the IL-6-mediated inflammatory loop.

4.
Biomedicines ; 10(3)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1731942

ABSTRACT

BACKGROUND: Clinical and experimental evidence point to a dysregulated immune response caused by SARS-CoV-2 as the primary mechanism of lung disease in COVID-19. However, the pathogenic mechanisms underlying COVID-19-associated ARDS (Acute Respiratory Distress Syndrome) remain incompletely understood. This study aims to explore the inflammatory responses of alveolar epithelial cells to either the spike S1 protein or to a mixture of cytokines secreted by S1-activated macrophages. METHODS AND RESULTS: The exposure of alveolar A549 cells to supernatants from spike-activated macrophages caused a further release of inflammatory mediators, with IL-8 reaching massive concentrations. The investigation of the molecular pathways indicated that NF-kB is involved in the transcription of IP-10 and RANTES, while STATs drive the expression of all the cytokines/chemokines tested, with the exception of IL-8 which is regulated by AP-1. Cytokines/chemokines produced by spike-activated macrophages are also likely responsible for the observed dysfunction of barrier integrity in Human Alveolar Epithelial Lentivirus-immortalized cells (hAELVi), as demonstrated by an increased permeability of the monolayers to mannitol, a marked decrease of TEER and a disorganization of claudin-7 distribution. CONCLUSION: Upon exposure to supernatants from S1-activated macrophages, A549 cells act both as targets and sources of cytokines/chemokines, suggesting that alveolar epithelium along with activated macrophages may orchestrate lung inflammation and contribute to alveolar injury, a hallmark of ARDS.

5.
Biomedicines ; 9(9)2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1408455

ABSTRACT

BACKGROUND: Emerging evidences suggest that in severe COVID-19, multi-organ failure is associated with a hyperinflammatory state (the so-called "cytokine storm") in combination with the development of a prothrombotic state. The central role of endothelial dysfunction in the pathogenesis of the disease is to date accepted, but the precise mechanisms underlying the associated coagulopathy remain unclear. Whether the alterations in vascular homeostasis directly depend upon the SARS-CoV-2 infection of endothelial cells or, rather, occur secondarily to the activation of the inflammatory response is still a matter of debate. Here, we address the effect of the SARS-CoV-2 spike S1 protein on the activation of human lung microvascular endothelial cells (HLMVEC). In particular, the existence of an endothelium-macrophage crosstalk in the response to the spike protein has been explored. METHODS AND RESULTS: The effect of the spike protein is addressed in human lung microvascular endothelial cells (HLMVEC), either directly or after incubation with a conditioned medium (CM) of human monocyte-derived macrophages (MDM) previously activated by the spike S1 protein (CM-MDM). Both MDM and HLMVEC are activated in response to the S1 protein, with an increased expression of pro-inflammatory mediators. However, when HLMVEC are exposed to CM-MDM, an enhanced cell activation occurs in terms of the expression of adhesion molecules, pro-coagulant markers, and chemokines. Under this experimental condition, ICAM-1 and VCAM-1, the chemokines CXCL8/IL-8, CCL2/MCP1, and CXCL10/IP-10 as well as the protein tissue factor (TF) are markedly induced. Instead, a decrease of thrombomodulin (THBD) is observed. CONCLUSION: Our data suggest that pro-inflammatory mediators released by spike-activated macrophages amplify the activation of endothelial cells, likely contributing to the impairment of vascular integrity and to the development of a pro-coagulative endothelium.

6.
Sci Rep ; 11(1): 4904, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1112008

ABSTRACT

SARS-CoV-2 virus infection is responsible for coronavirus disease (COVID-19), which is characterised by a hyperinflammatory response that plays a major role in determining the respiratory and immune-mediated complications of this condition. While isolating peripheral blood mononuclear cells (PBMCs) from whole blood of COVID-19 patients by density gradient centrifugation, we noticed some changes in the floating properties and in the sedimentation of the cells on density medium. Investigating this further, we found that in early phase COVID-19 patients, characterised by reduced circulating lymphocytes and monocytes, the PBMC fraction contained surprisingly high levels of neutrophils. Furthermore, the neutrophil population exhibited alterations in the cell size and in the internal complexity, consistent with the presence of low density neutrophils (LDNs) and immature forms, which may explain the shift seen in the floating abilities and that may be predictive of the severity of the disease. The percentage of this subset of neutrophils found in the PBMC band was rather spread (35.4 ± 27.2%, with a median 28.8% and IQR 11.6-56.1, Welch's t-test early phase COVID-19 versus blood donor healthy controls P < 0.0001). Results confirm the presence of an increased number of LDNs in patients with early stage COVID-19, which correlates with disease severity and may be recovered by centrifugation on a density gradient together with PBMCs.


Subject(s)
COVID-19/blood , Cell Separation , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Adult , COVID-19/pathology , Centrifugation, Density Gradient , Female , Humans , Leukocytes, Mononuclear/pathology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL